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ABSTRACT 

A preliminary design of a general architecture for autonomous 
intelligent training systems has been developed. The architecture 
integrates expert system technology with teachinghraining 
methodologies to permit the production of systems suitable for use 
by NASA, other government agencies, industry, and academia in the 
training of personnel for the performance of complex, mission-critical 
tasks. The proposed architecture consists of five elements: a user 
interface, a domain expert, a training session manager, a trainee 
model, and a training scenario generator. A user interface permits 
the trainee to access data and perform actions as he would in the 
task environment. The interface also provides the trainee with 
information on the current training environment and with on-line 
help. The domain expert contains the rules and procedural 
knowledge needed to carry out the task. It also includes "mal-rules" 
which permit the identification of common errors on the part of the 
trainee. The training session manager (TSM) examines the actions of 
the trainee and compares them with the actions of the domain 
expert. A unique feature of the TSM is its ability to permit the 
trainee the freedom to follow any valid path between two stages of 
the task for which he is being trained. Following each trainee action, 
evaluative assertions are made by the TSM and used to update the 
trainee model. A trainee model is developed for each individual 
using the system. The model includes a history of the trainee's 
interactions with the intelligent training system and provides 
evaluative data on the trainee's current skill level. A training 
scenario generator designs appropriate training exercises for each 
trainee based on the trainee model and the training goal(s). The 
design of this architecture has been guided and its efficacy tested 
through the development of a system for use by Mission Control 
Center Flight Dynamics Officers in training to perform Payload-Assist 
Module Deploys from the orbiter. 
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INTRODUCI'ION 

Government and industry must maintain a large effort in the 
training of their personnel: new personnel must be trained to 
perform the task(s) which they were hired to perform, continuing 

.personnel must be trained to upgrade or update their ability to 
perform assigned tasks, and continuing personnel must be trained to 
tackle new tasks. Within NASA a great number of training 
methodologies are employed, singly or in concert. These methods 
include training manuals, formal classes, procedural computer 
programs, simulations, and on-the-job training. The latter method is 
particularly effective in complex tasks where a great deal of 
independence is granted to the task performer. Of course, this 
training method is also the most expensive and may be impractical 
when there are many trainees and few experienced personnel to 
conduct on-the-job training. 

This report describes an effort to design an architecture for an 
entire generation of autonomous training systems which integrate 
many of the features of "traditional" training programs with expert 
system technology. The ultimate goal of this program is a software 
development environment which would permit those responsible for 
training in government, industry, and academia to develop intelligent 
computer-aided training (ICAT) systems for specific tasks. These 
ICAT systems would operate autonomously and would provide, for 
the trainee, much of the same experience that could be gained from 
the best on-the-job training. By integrating domain expertise with a 
knowledge of appropriate training methods, an ICAT session is 
intended to duplicate, as closely as possible, the trainee undergoing 
on-the-job training in the task environment, benefiting from the full 
attention of a task expert who is also an expert trainer. Thus, the 
philosophy of the ICAT system is to emulate, to the extent possible, 
the behavior of an experienced individual devoting his full time and 
attention to the training of a novice--proposing challenging training 
scenarios, monitoring and evaluating the actions of the trainee, 
providing meaningful comments in response to trainee errors, 
responding to trainee requests for information and hints (if 
appropriate), and remembering the strengths and weaknesses 
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displayed by the trainee so that appropriate future exercises can be 
designed. 

BACKGROUND 

Since the 1970's a number of academic and industrial 
researchers have explored the application of artificial intelligence 
concepts to the task of teaching a variety of subjects (e.g., geometry, 
computer programming, medical diagnosis, and electronic 
troubleshooting). A body of literature is now extant on student 
models and teachinghutoring methodologies adapted to intelligent 
tutoring systems in the academic environment1 . The earliest 
published reports which suggested the applications of artificial 
intelligence concepts to teaching tasks appeared in  the early 
19701s.293 Hartley and Sleeman3 actually proposed an architecture 
for an intelligent tutoring system. However, it is interesting to note 
that, in the fourteen years which have passed since the appearance 
of the Hartley and Sleeman proposal, no agreement has been reached 
among researchers on a general architecture for intelligent tutoring 
sy  s t ems  . 4  Nonetheless, a study of the literature on intelligent 
tutoring systems is an essential starting point for the development of 
the elements of an intelligent training system. 

Among the more notable intelligent tutoring systems reported 
to date are SOPHIE5, PROUST6 and the LISP Tutor'. The first of these 
systems, SOPHIE, was developed in response to a U.S. Air Force 
interest in a computer-based training course in electronic 
troubleshooting. SOPHIE contains three major components: an 
electronics expert with a general knowledge of electronic circuits, 
together with detailed knowledge about a particular type of circuit 
(in SOPHIE this was an IP-28 regulated power supply); a coach which 
examines student inputs and decides if it is appropriate to stop the 
student and offer advice; and a troubleshooting expert that uses the 
electronics expert to determine which possible measurements . are 
most useful in a particular context. Three versions of SOPHIE were 
produced and used for a time but none was ever viewed as a 
"finished" product. One of the major lacks of the SOPHIE systems was 
a user model. It is interesting to note that the development of a 
natural language interface for SOPHIE represented a large portion of 
the total task. 
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PROUST and the LISP Tutor are two well-known intelligent 
tutoring systems that have left the laboratory and found wider 
applications. PROUST (and its offspring, Micro-PROUST) serves as a 
"debugger" for finding nonsyntactical errors in Pascal programs 
written by student programmers. The developers of PROUST claim 
that it is capable of finding all of the bugs in at least seventy percent 
of the "moderately complex" programming assignments that its 
examines. PROUST contains an expert Pascal programmer that can 
write "good" programs for the assignments given to students. Bugs 
are found by matching the expert's program with that of the student; 
mismatches are identified as "bugs" in  the student program. This 
ability is contained in the PROUST "bug rule" component. After 
finding a bug, PROUST provides an English-language description of 
the bug to the student, enabling the student to correct his error. The 
system cannot handle student programs that depart radically from 
the programming "style" of the expert. The LISP Tutor is currently 
used to teach the introductory Lisp course offered at Carnegie-Mellon 
University. This system is based on the ACT (historically, a d a p t i v e  
Control of Thought) theory and consists of four elements: a 
structured editor which serves as an interface to the system for 
students, an expert Lisp programmer that provides an "ideal" 
solution to a programming problem, a bug catalog that contains 
errors made by novice programmers, and a tutoring component that 
provides both immediate feedback and guidance to the student. 
Evaluations of the LISP Tutor show that it can achieve results similar 
to those obtained by human tutors. One of its primary features is its 
enforcement of what its authors regard as a "good" programming 
style. 

TRAINING VERSUS TUTORING 

The ICAT architecture has been developed with a clear 
understanding that training is not the same as teaching or tutoring.8 
The NASA training environment differs in many ways from an 
academic teaching environment These differences are important in 
the design of an architecture for an intelligent training system: 
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a. Assigned tasks are often mission-critical, placing 
the responsibility for lives and property in the hands of 
those who have been trained. 

b. Personnel already have significant academic and 
practical experience to bring to bear on their assigned 

c. Trainees make use of a wide variety of training 
techniques, ranging from the study of comprehensive 
training manuals to simulations to actual on-the-job 
training under the supervision of more experienced 

d. Many of the tasks offer considerable freedom in the 
exact manner in which they may be accomplished. 

Those undergoing training for complex, mission-critical tasks 
are usually well aware of the importance of their job and the 
probable consequences of failure. While students are often 
motivated by the fear of receiving a low grade, trainees know that 
human lives and/or expensive equipment may depend on their skill 
in performing assigned tasks. This means that trainees may be 
highly motivated, but it also imposes on the trainer the responsibility 
for the accuracy of the training content (Le., verification of the 
domain expertise encoded in the system) and the ability of the 
trainer to correctly evaluate trainee actions. The ICAT system is 
intended, not to impart basic knowledge, but to aid the trainee in 
developing skills for which he already has the basic or "theoretical" 
knowledge. In short, this training system is designed to help a 
trainee put into practice that which he already intellectually 
understands. The system must take into account the type of training 
that both precedes and follows, building on the knowledge gained 
from training manuals and rule books while preparing the trainee for 
and complementing the on-the-job training which will follow. 
Perhaps most critical of all, trainees must be allowed to carry out an 
assigned task by any valid means. Such flexibility is essential so that 
trainees are able to retain and even hone an independence of 
thought and develop confidence in  their ability to respond to 
problems, even problems which they have never encountered and 
which their trainers never anticipated. 
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SYSTEM DESIGN 

The ICAT system architecture is modular and consists of five 
basic components: 

1. A user interface that permits the trainee to access 
the same information available to him in the the task 
environment and serves as a means for the trainee to 
assert actions and communicate with the intelligent 
training system 

2. A domain expert which can carry out the task using 
the same information that is available to the trainee and 
which also contains a list of "mal-rules" (explicitly 
identified errors that novice trainees commonly make). 

3. A training session manager (TSM) which examines 
the assertions made by the domain expert (of both 
correct and incorrect actions in a particular context) and 
by the trainee. Evaluative assertions are made following 
each trainee action. In addition, guidance can be 
provided to the trainee if appropriate for his skill level. 

4. A trainee model which contains a history of the 
individual trainee's interactions with the system together 
with summary evaluative data. 

5 .  A training scenario generator that designs 
increasingly-complex training exercises based on the 
current skill level contained in the trainee's model and on 
any weaknesses or deficiencies that the trainee has 
exhibited in previous interactions. 

Figure 1 contains a schematic diagram of the ICAT system. 
Note that provision is made for the user to interact with the system 
in two distinct ways and that a supervisor may also query the 
system for evaluative data on each trainee. The blackboard serves 
as a common "factbase" for all five system components. With the 
exception of the trainee model, each component makes assertions to 
the blackboard, and the  rule-based components look to the 
blackboard for facts against which to pattern match the left-hand 
sides of their rules. 
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User Interface 

The primary factor influencing the interface design is fidelity 
to the task environment. To avoid negative training, it is essential 
that the functionality and, to the extent possible, the actual 
appearance of the training environment duplicate that in which the 
task is performed. The interaction of the user interface with the 
other components of the ICAT system can be standardized and 
transported to any task environment; however, the user interface, as 
viewed by the trainee, must be developed for each task 
environment. The training of different tasks in the same 
environment may be able to utilize the same user interface. As a 
part of this project, a user interface was designed for a console 
position in the Mission Control Center at NASA/Johnson Space Center. 
The details of that interface are described elsewhere.9 

Domain Expert 

The domain expert is a "traditional" expert system in that it 
contains if-then rules which access data describing the task 
environment and is capable of executing the task and arriving at the 
correct "answers" or performing the correct actions. In addition to 
"knowing" the right way to carry out the task, the domain expert also 
contains knowledge of the typical errors that are made by novices. 
In this way, the ICAT system can not only detect an erroneous action 
made by a trainee, but also, through these so-called "mal-rules", it 
can diagnose the nature of the error and provide an error message to 
the trainee specifically designed to inform the trainee about the 
exact error made and correct the misconception or lack of knowledge 
that led to the commission of that error. Another of the interesting 
features of the ICAT system is its continual awareness of the 
environment (the external constraints dictated by the training 
exercise) and the context of the exercise. Rather than having the 
domain expert generate a complete and correct set of actions to 
accomplish the task, only those actions which are germane to the 
current context are asserted. In this way the expert "adapts" to 
alternate, but correct, paths that the trainee might choose to follow. 
Figure 2 shows schematically how the domain expert operates. This 
strategy was adopted because the human experts that perform 
complex tasks often recognize that many steps in the process may 
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be accomplished by two or more equally valid sequences of actions. 
To grant freedom of choice to the trainee and to encourage 
independence on his part, this type of flexibility in the ICAT system 
was deemed essential. 

Training Session Manager 

The training session manager is dedicated principally to error- 
handling. Its rules compare the assertions of the domain expert with 
those of the trainee to detect errors. Subsequently, the domain 
expert asserts facts that allow the TSM to write appropriate error 
messages to the trainee through the user interface. In addition, the 
TSM is sensitive to the skill level of the trainee as represented by the 
trainee model. As a result, the detail and "tone" of error messages is 
chosen to match the current trainee. For example, an error made by 
a first time user of the training system may require a verbose 
explanation so that the system can be certain that the trainee will 
have all of the knowledge and concepts needed to proceed. On the 
other hand, an experienced trainee may have momentarily forgotten 
a particular procedure or may have "lost his place". In this latter 
case a terse error message would be adequate to allow the trainee to 
resume the exercise. The TSM also encodes all trainee actions, both 
correct and incorrect, and passes them to the trainee model. 

Trainee Model 

Successful intelligent tutors incorporate student models to aid 
in error diagnosis and to guide the student's progress through the 
tutor's curriculum.10 The trainee model in the ICAT system stores 
assertions made by the TSM as a result of trainee actions. Thus, at 
its most fundamental level, the trainee model contains, for the 
current training session, a complete record of the correct and 
incorrect actions taken by the trainee. At the conclusion of each 
training session, the model updates a training summary which 
contains information about the trainee's progress, such as a skill level 
designator, number of sessions completed, number of errors made 
(by error type and session), and the time taken to complete sessions. 
After completing a session, the trainee can obtain a report of that 
session which contains a comprehensive list of correct and incorrect 
actions together with an evaluative commentary. A supervisor can 
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access each trainee's model to obtain this same report or to obtain 
summary data, at a higher level, on '  the trainee's progress. Finally, 
the training scenario generator uses the trainee model to produce 
new training exercises. 

Training Scenario Generator 

The training scenario generator relies upon a database of task 
"problems" to structure unique exercises for a trainee each time he 
interacts with the system. The initial exercises provided to a new 
trainee can be based on variants of the purely nominal task with no 
time constraints, distractions or "problems". Once the trainee has 
demonstrated an acceptable level of competence with the nominal 
task, the generator draws upon its database to insert selected 
problems into the training environment. In addition, time 
constraints are "tightened" as the trainee gains more experience and 
distractions of a form appropriate for the task environment are 
presented at "inconvenient" points during the task. The generator 
also examines the trainee model for particular types of errors 
committed by the trainee in previous (and the current) sessions. The 
trainee is then given the opportunity to demonstrate that he will not 
make that error again. Ultimately, the trainee is presented with 
exercises which embody the most difficult problems together with 
time constraints and distractions comparable to those encountered 
during the completion of an experienced person in the actual task 
environment. 

SYSTEM INTEGRATION 

The ICAT system which has been built as a prototype for this 
project is currently operational on a Symbolics 3600 series Lisp 
machine. The user interface and trainee model are written in 
common Lisp while the rules of the domain expert, TSM, and the 
training scenario generator are written in ART 3.0. This prototype 
system will ultimately be delivered to the users in a Unix 
workstation environment. To accomplish this delivery, the ART rules 
were written to facilitate translation into to CLIPSII and the Lisp 
code will be converted into C. 
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CONCLUSIONS 

The prototype ICAT system has, so far, proven to be a potentially 
valuable addition to the training tools available for training Flight 
Dynamics Officers in shuttle ground control. The authors are 
convinced that the basic structure of the ICAT system described here 
can be extended to form a general architecture for intelligent 
training systems for training flight controllers and crew members in 
the performance of complex, mission-critical tasks. It may 
ultimately be effective in training personnel for a wide variety of 
tasks in governmental, academic, and industrial settings. 
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